If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+59m-30=0
a = 2; b = 59; c = -30;
Δ = b2-4ac
Δ = 592-4·2·(-30)
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-61}{2*2}=\frac{-120}{4} =-30 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+61}{2*2}=\frac{2}{4} =1/2 $
| 2n-2n+3n-1=20 | | 910=5(x+19) | | 3(x+5)=7(x+4) | | 5x-2x-2=1 | | 10+2n=4n-2 | | 2c-2c+c-1=11 | | 10+6n=4-2n | | 2c+4c-6c+5c=10 | | 9j+2j-4j=7 | | 9j+2j−4j=7j=0j=4j=2j=1 | | 6x-4(2x+2)=4x | | 3^12x=81^2x-4 | | a−a+4a−3a=10a=9a=13a=3a=10 | | u-u+u-u+4u=16 | | u−u+u−u+4u=16 | | 0.5*t7/8=5 | | 5(0)+9y=10 | | 5=2x+7=13 | | 86=4/5x-10 | | 4j−j=18 | | 2b+2b=4 | | 4(x+3)=6(x-1)x= | | x-7/4=-16 | | 13/18=p/10 | | (x+9)*3=179.50 | | -11x-17=-105 | | X+10/3=2x | | (4x-24.6)=x+11.3 | | 4(2x-5)=148 | | -4(x+1)=x+6 | | 2(m+25)=4(m-0.5)m= | | -2x=-3(x+1)/2 |